Metamath Proof Explorer


Theorem dfss2

Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of TakeutiZaring p. 17. (Contributed by NM, 8-Jan-2002) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 16-May-2024)

Ref Expression
Assertion dfss2 A B x x A x B

Proof

Step Hyp Ref Expression
1 dfcleq A = A B x x A x A B
2 dfss A B A = A B
3 pm4.71 x A x B x A x A x B
4 elin x A B x A x B
5 4 bibi2i x A x A B x A x A x B
6 3 5 bitr4i x A x B x A x A B
7 6 albii x x A x B x x A x A B
8 1 2 7 3bitr4i A B x x A x B