Metamath Proof Explorer


Theorem dfss2

Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of TakeutiZaring p. 17. (Contributed by NM, 8-Jan-2002) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 16-May-2024)

Ref Expression
Assertion dfss2 ABxxAxB

Proof

Step Hyp Ref Expression
1 dfcleq A=ABxxAxAB
2 dfss ABA=AB
3 pm4.71 xAxBxAxAxB
4 elin xABxAxB
5 4 bibi2i xAxABxAxAxB
6 3 5 bitr4i xAxBxAxAB
7 6 albii xxAxBxxAxAB
8 1 2 7 3bitr4i ABxxAxB