Metamath Proof Explorer


Theorem dfss4

Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion dfss4 ABBBA=A

Proof

Step Hyp Ref Expression
1 sseqin2 ABBA=A
2 eldif xBAxB¬xA
3 2 notbii ¬xBA¬xB¬xA
4 3 anbi2i xB¬xBAxB¬xB¬xA
5 elin xBAxBxA
6 abai xBxAxBxBxA
7 iman xBxA¬xB¬xA
8 7 anbi2i xBxBxAxB¬xB¬xA
9 5 6 8 3bitri xBAxB¬xB¬xA
10 4 9 bitr4i xB¬xBAxBA
11 10 difeqri BBA=BA
12 11 eqeq1i BBA=ABA=A
13 1 12 bitr4i ABBBA=A