Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dfss4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 | |
|
2 | eldif | |
|
3 | 2 | notbii | |
4 | 3 | anbi2i | |
5 | elin | |
|
6 | abai | |
|
7 | iman | |
|
8 | 7 | anbi2i | |
9 | 5 6 8 | 3bitri | |
10 | 4 9 | bitr4i | |
11 | 10 | difeqri | |
12 | 11 | eqeq1i | |
13 | 1 12 | bitr4i | |