Metamath Proof Explorer


Theorem dfxor4

Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion dfxor4 φψ¬¬φψ¬φ¬ψ

Proof

Step Hyp Ref Expression
1 xor2 φψφψ¬φψ
2 df-or φψ¬φψ
3 imnan φ¬ψ¬φψ
4 3 bicomi ¬φψφ¬ψ
5 2 4 anbi12i φψ¬φψ¬φψφ¬ψ
6 df-an ¬φψφ¬ψ¬¬φψ¬φ¬ψ
7 1 5 6 3bitri φψ¬¬φψ¬φ¬ψ