Metamath Proof Explorer


Theorem diaclN

Description: Closure of partial isomorphism A for a lattice K . (Contributed by NM, 4-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1o.h H=LHypK
dia1o.i I=DIsoAKW
Assertion diaclN KHLWHXdomIIXranI

Proof

Step Hyp Ref Expression
1 dia1o.h H=LHypK
2 dia1o.i I=DIsoAKW
3 1 2 diaf11N KHLWHI:domI1-1 ontoranI
4 f1ofun I:domI1-1 ontoranIFunI
5 3 4 syl KHLWHFunI
6 fvelrn FunIXdomIIXranI
7 5 6 sylan KHLWHXdomIIXranI