Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dibdiadm
Next ⟩
dibfnN
Metamath Proof Explorer
Ascii
Unicode
Theorem
dibdiadm
Description:
Domain of the partial isomorphism B.
(Contributed by
NM
, 17-Jan-2014)
Ref
Expression
Hypotheses
dibfna.h
⊢
H
=
LHyp
⁡
K
dibfna.j
⊢
J
=
DIsoA
⁡
K
⁡
W
dibfna.i
⊢
I
=
DIsoB
⁡
K
⁡
W
Assertion
dibdiadm
⊢
K
∈
V
∧
W
∈
H
→
dom
⁡
I
=
dom
⁡
J
Proof
Step
Hyp
Ref
Expression
1
dibfna.h
⊢
H
=
LHyp
⁡
K
2
dibfna.j
⊢
J
=
DIsoA
⁡
K
⁡
W
3
dibfna.i
⊢
I
=
DIsoB
⁡
K
⁡
W
4
1
2
3
dibfna
⊢
K
∈
V
∧
W
∈
H
→
I
Fn
dom
⁡
J
5
4
fndmd
⊢
K
∈
V
∧
W
∈
H
→
dom
⁡
I
=
dom
⁡
J