Metamath Proof Explorer


Theorem difeqri

Description: Inference from membership to difference. (Contributed by NM, 17-May-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypothesis difeqri.1 xA¬xBxC
Assertion difeqri AB=C

Proof

Step Hyp Ref Expression
1 difeqri.1 xA¬xBxC
2 eldif xABxA¬xB
3 2 1 bitri xABxC
4 3 eqriv AB=C