Metamath Proof Explorer


Theorem difopab

Description: Difference of two ordered-pair class abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015) (Proof shortened by SN, 19-Dec-2024)

Ref Expression
Assertion difopab xy|φxy|ψ=xy|φ¬ψ

Proof

Step Hyp Ref Expression
1 relopabv Relxy|φ
2 reldif Relxy|φRelxy|φxy|ψ
3 1 2 ax-mp Relxy|φxy|ψ
4 relopabv Relxy|φ¬ψ
5 sban zxwyφwy¬ψzxwyφzxwy¬ψ
6 sban wyφ¬ψwyφwy¬ψ
7 6 sbbii zxwyφ¬ψzxwyφwy¬ψ
8 vopelopabsb zwxy|φzxwyφ
9 sbn zx¬wyψ¬zxwyψ
10 sbn wy¬ψ¬wyψ
11 10 sbbii zxwy¬ψzx¬wyψ
12 vopelopabsb zwxy|ψzxwyψ
13 12 notbii ¬zwxy|ψ¬zxwyψ
14 9 11 13 3bitr4ri ¬zwxy|ψzxwy¬ψ
15 8 14 anbi12i zwxy|φ¬zwxy|ψzxwyφzxwy¬ψ
16 5 7 15 3bitr4ri zwxy|φ¬zwxy|ψzxwyφ¬ψ
17 eldif zwxy|φxy|ψzwxy|φ¬zwxy|ψ
18 vopelopabsb zwxy|φ¬ψzxwyφ¬ψ
19 16 17 18 3bitr4i zwxy|φxy|ψzwxy|φ¬ψ
20 3 4 19 eqrelriiv xy|φxy|ψ=xy|φ¬ψ