Metamath Proof Explorer


Theorem discbas

Description: A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k K = Base ndx B ndx I B
discthin.c C = ProsetToCat K
Assertion discbas B V B = Base C

Proof

Step Hyp Ref Expression
1 discthin.k K = Base ndx B ndx I B
2 discthin.c C = ProsetToCat K
3 2 a1i B V C = ProsetToCat K
4 1 resipos B V K Poset
5 posprs K Poset K Proset
6 4 5 syl B V K Proset
7 1 resiposbas B V B = Base K
8 3 6 7 prstcbas B V B = Base C