Metamath Proof Explorer


Theorem disjss2

Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjss2 xABCDisjxACDisjxAB

Proof

Step Hyp Ref Expression
1 ssel BCyByC
2 1 ralimi xABCxAyByC
3 rmoim xAyByC*xAyC*xAyB
4 2 3 syl xABC*xAyC*xAyB
5 4 alimdv xABCy*xAyCy*xAyB
6 df-disj DisjxACy*xAyC
7 df-disj DisjxABy*xAyB
8 5 6 7 3imtr4g xABCDisjxACDisjxAB