Metamath Proof Explorer


Theorem disjuniel

Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses disjuniel.1 φDisjxAx
disjuniel.2 φBA
disjuniel.3 φCAB
Assertion disjuniel φBC=

Proof

Step Hyp Ref Expression
1 disjuniel.1 φDisjxAx
2 disjuniel.2 φBA
3 disjuniel.3 φCAB
4 uniiun B=xBx
5 4 ineq1i BC=xBxC
6 id x=Cx=C
7 1 6 2 3 disjiunel φxBxC=
8 5 7 eqtrid φBC=