Metamath Proof Explorer


Theorem divadddivd

Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divmuldivd.4 φD
divmuldivd.5 φB0
divmuldivd.6 φD0
Assertion divadddivd φAB+CD=AD+CBBD

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divmuldivd.4 φD
5 divmuldivd.5 φB0
6 divmuldivd.6 φD0
7 2 5 jca φBB0
8 4 6 jca φDD0
9 divadddiv ACBB0DD0AB+CD=AD+CBBD
10 1 3 7 8 9 syl22anc φAB+CD=AD+CBBD