Metamath Proof Explorer


Theorem divadddiv

Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion divadddiv ABCC0DD0AC+BD=AD+BCCD

Proof

Step Hyp Ref Expression
1 mulcl ADAD
2 1 ad2ant2r ABDD0AD
3 2 adantrl ABCC0DD0AD
4 mulcl BCBC
5 4 adantrr BCC0BC
6 5 ad2ant2lr ABCC0DD0BC
7 mulcl CDCD
8 7 ad2ant2r CC0DD0CD
9 mulne0 CC0DD0CD0
10 8 9 jca CC0DD0CDCD0
11 10 adantl ABCC0DD0CDCD0
12 divdir ADBCCDCD0AD+BCCD=ADCD+BCCD
13 3 6 11 12 syl3anc ABCC0DD0AD+BCCD=ADCD+BCCD
14 simpll ABCC0DD0A
15 simprr ABCC0DD0DD0
16 15 simpld ABCC0DD0D
17 14 16 mulcomd ABCC0DD0AD=DA
18 simprll ABCC0DD0C
19 18 16 mulcomd ABCC0DD0CD=DC
20 17 19 oveq12d ABCC0DD0ADCD=DADC
21 simprl ABCC0DD0CC0
22 divcan5 ACC0DD0DADC=AC
23 14 21 15 22 syl3anc ABCC0DD0DADC=AC
24 20 23 eqtrd ABCC0DD0ADCD=AC
25 simplr ABCC0DD0B
26 25 18 mulcomd ABCC0DD0BC=CB
27 26 oveq1d ABCC0DD0BCCD=CBCD
28 divcan5 BDD0CC0CBCD=BD
29 25 15 21 28 syl3anc ABCC0DD0CBCD=BD
30 27 29 eqtrd ABCC0DD0BCCD=BD
31 24 30 oveq12d ABCC0DD0ADCD+BCCD=AC+BD
32 13 31 eqtr2d ABCC0DD0AC+BD=AD+BCCD