Metamath Proof Explorer


Theorem divccncf

Description: Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007)

Ref Expression
Hypothesis divccncf.1 F=xxA
Assertion divccncf AA0F:cn

Proof

Step Hyp Ref Expression
1 divccncf.1 F=xxA
2 divrec2 xAA0xA=1Ax
3 2 3expb xAA0xA=1Ax
4 3 ancoms AA0xxA=1Ax
5 4 mpteq2dva AA0xxA=x1Ax
6 1 5 eqtrid AA0F=x1Ax
7 reccl AA01A
8 eqid x1Ax=x1Ax
9 8 mulc1cncf 1Ax1Ax:cn
10 7 9 syl AA0x1Ax:cn
11 6 10 eqeltrd AA0F:cn