Metamath Proof Explorer


Theorem divcxpd

Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
recxpcld.2 φ0A
divcxpd.4 φB+
divcxpd.5 φC
Assertion divcxpd φABC=ACBC

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 recxpcld.2 φ0A
3 divcxpd.4 φB+
4 divcxpd.5 φC
5 divcxp A0AB+CABC=ACBC
6 1 2 3 4 5 syl211anc φABC=ACBC