Metamath Proof Explorer
		
		
		
		Description:  Complex exponentiation of a quotient.  (Contributed by Mario Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recxpcld.1 |  | 
					
						|  |  | recxpcld.2 |  | 
					
						|  |  | divcxpd.4 |  | 
					
						|  |  | divcxpd.5 |  | 
				
					|  | Assertion | divcxpd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpcld.1 |  | 
						
							| 2 |  | recxpcld.2 |  | 
						
							| 3 |  | divcxpd.4 |  | 
						
							| 4 |  | divcxpd.5 |  | 
						
							| 5 |  | divcxp |  | 
						
							| 6 | 1 2 3 4 5 | syl211anc |  |