Metamath Proof Explorer


Theorem djuin

Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djuin inlAinrB=

Proof

Step Hyp Ref Expression
1 incom inrBinlA=inlAinrB
2 imassrn inrBraninr
3 djurf1o inr:V1-1 onto1𝑜×V
4 f1of inr:V1-1 onto1𝑜×Vinr:V1𝑜×V
5 frn inr:V1𝑜×Vraninr1𝑜×V
6 3 4 5 mp2b raninr1𝑜×V
7 2 6 sstri inrB1𝑜×V
8 incom inlA1𝑜×V=1𝑜×VinlA
9 imassrn inlAraninl
10 djulf1o inl:V1-1 onto×V
11 f1of inl:V1-1 onto×Vinl:V×V
12 frn inl:V×Vraninl×V
13 10 11 12 mp2b raninl×V
14 9 13 sstri inlA×V
15 1n0 1𝑜
16 15 necomi 1𝑜
17 disjsn2 1𝑜1𝑜=
18 xpdisj1 1𝑜=×V1𝑜×V=
19 16 17 18 mp2b ×V1𝑜×V=
20 ssdisj inlA×V×V1𝑜×V=inlA1𝑜×V=
21 14 19 20 mp2an inlA1𝑜×V=
22 8 21 eqtr3i 1𝑜×VinlA=
23 ssdisj inrB1𝑜×V1𝑜×VinlA=inrBinlA=
24 7 22 23 mp2an inrBinlA=
25 1 24 eqtr3i inlAinrB=