Metamath Proof Explorer


Theorem dlatmjdi

Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses isdlat.b B=BaseK
isdlat.j ˙=joinK
isdlat.m ˙=meetK
Assertion dlatmjdi KDLatXBYBZBX˙Y˙Z=X˙Y˙X˙Z

Proof

Step Hyp Ref Expression
1 isdlat.b B=BaseK
2 isdlat.j ˙=joinK
3 isdlat.m ˙=meetK
4 1 2 3 isdlat KDLatKLatxByBzBx˙y˙z=x˙y˙x˙z
5 4 simprbi KDLatxByBzBx˙y˙z=x˙y˙x˙z
6 oveq1 x=Xx˙y˙z=X˙y˙z
7 oveq1 x=Xx˙y=X˙y
8 oveq1 x=Xx˙z=X˙z
9 7 8 oveq12d x=Xx˙y˙x˙z=X˙y˙X˙z
10 6 9 eqeq12d x=Xx˙y˙z=x˙y˙x˙zX˙y˙z=X˙y˙X˙z
11 oveq1 y=Yy˙z=Y˙z
12 11 oveq2d y=YX˙y˙z=X˙Y˙z
13 oveq2 y=YX˙y=X˙Y
14 13 oveq1d y=YX˙y˙X˙z=X˙Y˙X˙z
15 12 14 eqeq12d y=YX˙y˙z=X˙y˙X˙zX˙Y˙z=X˙Y˙X˙z
16 oveq2 z=ZY˙z=Y˙Z
17 16 oveq2d z=ZX˙Y˙z=X˙Y˙Z
18 oveq2 z=ZX˙z=X˙Z
19 18 oveq2d z=ZX˙Y˙X˙z=X˙Y˙X˙Z
20 17 19 eqeq12d z=ZX˙Y˙z=X˙Y˙X˙zX˙Y˙Z=X˙Y˙X˙Z
21 10 15 20 rspc3v XBYBZBxByBzBx˙y˙z=x˙y˙x˙zX˙Y˙Z=X˙Y˙X˙Z
22 5 21 mpan9 KDLatXBYBZBX˙Y˙Z=X˙Y˙X˙Z