Metamath Proof Explorer


Theorem dlwwlknondlwlknonen

Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses dlwwlknondlwlknonbij.v V=VtxG
dlwwlknondlwlknonbij.w W=wClWalksG|1stw=N2ndw0=X2ndwN2=X
dlwwlknondlwlknonbij.d D=wXClWWalksNOnGN|wN2=X
Assertion dlwwlknondlwlknonen GUSHGraphXVN2WD

Proof

Step Hyp Ref Expression
1 dlwwlknondlwlknonbij.v V=VtxG
2 dlwwlknondlwlknonbij.w W=wClWalksG|1stw=N2ndw0=X2ndwN2=X
3 dlwwlknondlwlknonbij.d D=wXClWWalksNOnGN|wN2=X
4 fvex ClWalksGV
5 2 4 rabex2 WV
6 ovex XClWWalksNOnGNV
7 3 6 rabex2 DV
8 eqid cW2ndcprefix1stc=cW2ndcprefix1stc
9 1 2 3 8 dlwwlknondlwlknonf1o GUSHGraphXVN2cW2ndcprefix1stc:W1-1 ontoD
10 f1oen2g WVDVcW2ndcprefix1stc:W1-1 ontoDWD
11 5 7 9 10 mp3an12i GUSHGraphXVN2WD