Metamath Proof Explorer


Theorem dmaddpi

Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmaddpi dom+𝑵=𝑵×𝑵

Proof

Step Hyp Ref Expression
1 dmres dom+𝑜𝑵×𝑵=𝑵×𝑵dom+𝑜
2 fnoa +𝑜FnOn×On
3 2 fndmi dom+𝑜=On×On
4 3 ineq2i 𝑵×𝑵dom+𝑜=𝑵×𝑵On×On
5 1 4 eqtri dom+𝑜𝑵×𝑵=𝑵×𝑵On×On
6 df-pli +𝑵=+𝑜𝑵×𝑵
7 6 dmeqi dom+𝑵=dom+𝑜𝑵×𝑵
8 df-ni 𝑵=ω
9 difss ωω
10 8 9 eqsstri 𝑵ω
11 omsson ωOn
12 10 11 sstri 𝑵On
13 anidm 𝑵On𝑵On𝑵On
14 12 13 mpbir 𝑵On𝑵On
15 xpss12 𝑵On𝑵On𝑵×𝑵On×On
16 14 15 ax-mp 𝑵×𝑵On×On
17 dfss 𝑵×𝑵On×On𝑵×𝑵=𝑵×𝑵On×On
18 16 17 mpbi 𝑵×𝑵=𝑵×𝑵On×On
19 5 7 18 3eqtr4i dom+𝑵=𝑵×𝑵