Metamath Proof Explorer


Theorem dmncrng

Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmncrng R Dmn R CRingOps

Proof

Step Hyp Ref Expression
1 isdmn2 R Dmn R PrRing R CRingOps
2 1 simprbi R Dmn R CRingOps