Metamath Proof Explorer


Theorem dmpropg

Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmpropg BVDWdomABCD=AC

Proof

Step Hyp Ref Expression
1 dmsnopg BVdomAB=A
2 dmsnopg DWdomCD=C
3 uneq12 domAB=AdomCD=CdomABdomCD=AC
4 1 2 3 syl2an BVDWdomABdomCD=AC
5 df-pr ABCD=ABCD
6 5 dmeqi domABCD=domABCD
7 dmun domABCD=domABdomCD
8 6 7 eqtri domABCD=domABdomCD
9 df-pr AC=AC
10 4 8 9 3eqtr4g BVDWdomABCD=AC