Metamath Proof Explorer


Theorem dmrab

Description: Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023)

Ref Expression
Hypothesis dmrab.1 z=xyφψ
Assertion dmrab domzA×B|φ=xA|yBψ

Proof

Step Hyp Ref Expression
1 dmrab.1 z=xyφψ
2 1 elrab xyzA×B|φxyA×Bψ
3 opelxp xyA×BxAyB
4 3 anbi1i xyA×BψxAyBψ
5 ancom xAyByBxA
6 5 anbi1i xAyBψyBxAψ
7 2 4 6 3bitri xyzA×B|φyBxAψ
8 anass yBxAψyBxAψ
9 ancom xAψψxA
10 9 anbi2i yBxAψyBψxA
11 7 8 10 3bitri xyzA×B|φyBψxA
12 11 exbii yxyzA×B|φyyBψxA
13 df-rex yBψxAyyBψxA
14 r19.41v yBψxAyBψxA
15 12 13 14 3bitr2i yxyzA×B|φyBψxA
16 15 biancomi yxyzA×B|φxAyBψ
17 16 abbii x|yxyzA×B|φ=x|xAyBψ
18 dfdm3 domzA×B|φ=x|yxyzA×B|φ
19 df-rab xA|yBψ=x|xAyBψ
20 17 18 19 3eqtr4i domzA×B|φ=xA|yBψ