Metamath Proof Explorer


Theorem dmres

Description: The domain of a restriction. Exercise 14 of TakeutiZaring p. 25. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion dmres domAB=BdomA

Proof

Step Hyp Ref Expression
1 vex xV
2 1 eldm2 xdomAByxyAB
3 19.42v yxBxyAxByxyA
4 vex yV
5 4 opelresi xyABxBxyA
6 5 exbii yxyAByxBxyA
7 1 eldm2 xdomAyxyA
8 7 anbi2i xBxdomAxByxyA
9 3 6 8 3bitr4i yxyABxBxdomA
10 2 9 bitr2i xBxdomAxdomAB
11 10 ineqri BdomA=domAB
12 11 eqcomi domAB=BdomA