Metamath Proof Explorer


Theorem dmsn0el

Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion dmsn0el AdomA=

Proof

Step Hyp Ref Expression
1 dmsnn0 AV×VdomA
2 0nelelxp AV×V¬A
3 1 2 sylbir domA¬A
4 3 necon4ai AdomA=