Metamath Proof Explorer


Theorem 0nelelxp

Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion 0nelelxp CA×B¬C

Proof

Step Hyp Ref Expression
1 elxp CA×BxyC=xyxAyB
2 0nelop ¬xy
3 eleq2 C=xyCxy
4 2 3 mtbiri C=xy¬C
5 4 adantr C=xyxAyB¬C
6 5 exlimivv xyC=xyxAyB¬C
7 1 6 sylbi CA×B¬C