Metamath Proof Explorer


Theorem dmsnn0

Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmsnn0 AV×VdomA

Proof

Step Hyp Ref Expression
1 vex xV
2 1 eldm xdomAyxAy
3 df-br xAyxyA
4 opex xyV
5 4 elsn xyAxy=A
6 eqcom xy=AA=xy
7 3 5 6 3bitri xAyA=xy
8 7 exbii yxAyyA=xy
9 2 8 bitr2i yA=xyxdomA
10 9 exbii xyA=xyxxdomA
11 elvv AV×VxyA=xy
12 n0 domAxxdomA
13 10 11 12 3bitr4i AV×VdomA