Metamath Proof Explorer


Theorem dmxrncnvep

Description: Domain of the range product with converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmxrncnvep dom R E -1 = dom R

Proof

Step Hyp Ref Expression
1 dmxrn dom R E -1 = dom R dom E -1
2 dmcnvep dom E -1 = V
3 2 ineq2i dom R dom E -1 = dom R V
4 invdif dom R V = dom R
5 1 3 4 3eqtri dom R E -1 = dom R