Metamath Proof Explorer


Theorem dnnumch2

Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F=recszVGAranz
dnnumch.a φAV
dnnumch.g φy𝒫AyGyy
Assertion dnnumch2 φAranF

Proof

Step Hyp Ref Expression
1 dnnumch.f F=recszVGAranz
2 dnnumch.a φAV
3 dnnumch.g φy𝒫AyGyy
4 1 2 3 dnnumch1 φxOnFx:x1-1 ontoA
5 f1ofo Fx:x1-1 ontoAFx:xontoA
6 forn Fx:xontoAranFx=A
7 5 6 syl Fx:x1-1 ontoAranFx=A
8 resss FxF
9 rnss FxFranFxranF
10 8 9 mp1i Fx:x1-1 ontoAranFxranF
11 7 10 eqsstrrd Fx:x1-1 ontoAAranF
12 11 a1i φFx:x1-1 ontoAAranF
13 12 rexlimdvw φxOnFx:x1-1 ontoAAranF
14 4 13 mpd φAranF