Metamath Proof Explorer


Theorem dnnumch3lem

Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F=recszVGAranz
dnnumch.a φAV
dnnumch.g φy𝒫AyGyy
Assertion dnnumch3lem φwAxAF-1xw=F-1w

Proof

Step Hyp Ref Expression
1 dnnumch.f F=recszVGAranz
2 dnnumch.a φAV
3 dnnumch.g φy𝒫AyGyy
4 eqid xAF-1x=xAF-1x
5 sneq x=wx=w
6 5 imaeq2d x=wF-1x=F-1w
7 6 inteqd x=wF-1x=F-1w
8 simpr φwAwA
9 cnvimass F-1wdomF
10 1 tfr1 FFnOn
11 10 fndmi domF=On
12 9 11 sseqtri F-1wOn
13 1 2 3 dnnumch2 φAranF
14 13 sselda φwAwranF
15 inisegn0 wranFF-1w
16 14 15 sylib φwAF-1w
17 oninton F-1wOnF-1wF-1wOn
18 12 16 17 sylancr φwAF-1wOn
19 4 7 8 18 fvmptd3 φwAxAF-1xw=F-1w