Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
4 |
|
eqid |
|- ( x e. A |-> |^| ( `' F " { x } ) ) = ( x e. A |-> |^| ( `' F " { x } ) ) |
5 |
|
sneq |
|- ( x = w -> { x } = { w } ) |
6 |
5
|
imaeq2d |
|- ( x = w -> ( `' F " { x } ) = ( `' F " { w } ) ) |
7 |
6
|
inteqd |
|- ( x = w -> |^| ( `' F " { x } ) = |^| ( `' F " { w } ) ) |
8 |
|
simpr |
|- ( ( ph /\ w e. A ) -> w e. A ) |
9 |
|
cnvimass |
|- ( `' F " { w } ) C_ dom F |
10 |
1
|
tfr1 |
|- F Fn On |
11 |
10
|
fndmi |
|- dom F = On |
12 |
9 11
|
sseqtri |
|- ( `' F " { w } ) C_ On |
13 |
1 2 3
|
dnnumch2 |
|- ( ph -> A C_ ran F ) |
14 |
13
|
sselda |
|- ( ( ph /\ w e. A ) -> w e. ran F ) |
15 |
|
inisegn0 |
|- ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) |
16 |
14 15
|
sylib |
|- ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) |
17 |
|
oninton |
|- ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. On ) |
18 |
12 16 17
|
sylancr |
|- ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. On ) |
19 |
4 7 8 18
|
fvmptd3 |
|- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |