| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
| 2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
| 3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
| 4 |
|
cnvimass |
|- ( `' F " { x } ) C_ dom F |
| 5 |
1
|
tfr1 |
|- F Fn On |
| 6 |
5
|
fndmi |
|- dom F = On |
| 7 |
4 6
|
sseqtri |
|- ( `' F " { x } ) C_ On |
| 8 |
1 2 3
|
dnnumch2 |
|- ( ph -> A C_ ran F ) |
| 9 |
8
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ran F ) |
| 10 |
|
inisegn0 |
|- ( x e. ran F <-> ( `' F " { x } ) =/= (/) ) |
| 11 |
9 10
|
sylib |
|- ( ( ph /\ x e. A ) -> ( `' F " { x } ) =/= (/) ) |
| 12 |
|
oninton |
|- ( ( ( `' F " { x } ) C_ On /\ ( `' F " { x } ) =/= (/) ) -> |^| ( `' F " { x } ) e. On ) |
| 13 |
7 11 12
|
sylancr |
|- ( ( ph /\ x e. A ) -> |^| ( `' F " { x } ) e. On ) |
| 14 |
13
|
fmpttd |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) |
| 15 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 16 |
15
|
adantrr |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 17 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 18 |
17
|
adantrl |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) ) |
| 20 |
|
fveq2 |
|- ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
| 21 |
20
|
adantl |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
| 22 |
|
cnvimass |
|- ( `' F " { v } ) C_ dom F |
| 23 |
22 6
|
sseqtri |
|- ( `' F " { v } ) C_ On |
| 24 |
8
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. ran F ) |
| 25 |
|
inisegn0 |
|- ( v e. ran F <-> ( `' F " { v } ) =/= (/) ) |
| 26 |
24 25
|
sylib |
|- ( ( ph /\ v e. A ) -> ( `' F " { v } ) =/= (/) ) |
| 27 |
|
onint |
|- ( ( ( `' F " { v } ) C_ On /\ ( `' F " { v } ) =/= (/) ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
| 28 |
23 26 27
|
sylancr |
|- ( ( ph /\ v e. A ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
| 29 |
|
fniniseg |
|- ( F Fn On -> ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) ) |
| 30 |
5 29
|
ax-mp |
|- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) |
| 31 |
30
|
simprbi |
|- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 32 |
28 31
|
syl |
|- ( ( ph /\ v e. A ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 33 |
32
|
adantrr |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 35 |
|
cnvimass |
|- ( `' F " { w } ) C_ dom F |
| 36 |
35 6
|
sseqtri |
|- ( `' F " { w } ) C_ On |
| 37 |
8
|
sselda |
|- ( ( ph /\ w e. A ) -> w e. ran F ) |
| 38 |
|
inisegn0 |
|- ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) |
| 39 |
37 38
|
sylib |
|- ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) |
| 40 |
|
onint |
|- ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
| 41 |
36 39 40
|
sylancr |
|- ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
| 42 |
|
fniniseg |
|- ( F Fn On -> ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) ) |
| 43 |
5 42
|
ax-mp |
|- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) |
| 44 |
43
|
simprbi |
|- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 45 |
41 44
|
syl |
|- ( ( ph /\ w e. A ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 46 |
45
|
adantrl |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 47 |
46
|
adantr |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 48 |
21 34 47
|
3eqtr3d |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> v = w ) |
| 49 |
48
|
ex |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> v = w ) ) |
| 50 |
19 49
|
sylbid |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
| 51 |
50
|
ralrimivva |
|- ( ph -> A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
| 52 |
|
dff13 |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On /\ A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) ) |
| 53 |
14 51 52
|
sylanbrc |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |