| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnnumch.f |
|
| 2 |
|
dnnumch.a |
|
| 3 |
|
dnnumch.g |
|
| 4 |
|
cnvimass |
|
| 5 |
1
|
tfr1 |
|
| 6 |
5
|
fndmi |
|
| 7 |
4 6
|
sseqtri |
|
| 8 |
1 2 3
|
dnnumch2 |
|
| 9 |
8
|
sselda |
|
| 10 |
|
inisegn0 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
oninton |
|
| 13 |
7 11 12
|
sylancr |
|
| 14 |
13
|
fmpttd |
|
| 15 |
1 2 3
|
dnnumch3lem |
|
| 16 |
15
|
adantrr |
|
| 17 |
1 2 3
|
dnnumch3lem |
|
| 18 |
17
|
adantrl |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
adantl |
|
| 22 |
|
cnvimass |
|
| 23 |
22 6
|
sseqtri |
|
| 24 |
8
|
sselda |
|
| 25 |
|
inisegn0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
onint |
|
| 28 |
23 26 27
|
sylancr |
|
| 29 |
|
fniniseg |
|
| 30 |
5 29
|
ax-mp |
|
| 31 |
30
|
simprbi |
|
| 32 |
28 31
|
syl |
|
| 33 |
32
|
adantrr |
|
| 34 |
33
|
adantr |
|
| 35 |
|
cnvimass |
|
| 36 |
35 6
|
sseqtri |
|
| 37 |
8
|
sselda |
|
| 38 |
|
inisegn0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
|
onint |
|
| 41 |
36 39 40
|
sylancr |
|
| 42 |
|
fniniseg |
|
| 43 |
5 42
|
ax-mp |
|
| 44 |
43
|
simprbi |
|
| 45 |
41 44
|
syl |
|
| 46 |
45
|
adantrl |
|
| 47 |
46
|
adantr |
|
| 48 |
21 34 47
|
3eqtr3d |
|
| 49 |
48
|
ex |
|
| 50 |
19 49
|
sylbid |
|
| 51 |
50
|
ralrimivva |
|
| 52 |
|
dff13 |
|
| 53 |
14 51 52
|
sylanbrc |
|