Metamath Proof Explorer


Theorem dochkrshp2

Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochkrshp2.h H=LHypK
dochkrshp2.o ˙=ocHKW
dochkrshp2.u U=DVecHKW
dochkrshp2.v V=BaseU
dochkrshp2.y Y=LSHypU
dochkrshp2.f F=LFnlU
dochkrshp2.l L=LKerU
dochkrshp2.k φKHLWH
dochkrshp2.g φGF
Assertion dochkrshp2 φ˙˙LGV˙˙LG=LGLGY

Proof

Step Hyp Ref Expression
1 dochkrshp2.h H=LHypK
2 dochkrshp2.o ˙=ocHKW
3 dochkrshp2.u U=DVecHKW
4 dochkrshp2.v V=BaseU
5 dochkrshp2.y Y=LSHypU
6 dochkrshp2.f F=LFnlU
7 dochkrshp2.l L=LKerU
8 dochkrshp2.k φKHLWH
9 dochkrshp2.g φGF
10 1 2 3 4 5 6 7 8 9 dochkrshp φ˙˙LGV˙˙LGY
11 1 2 3 6 5 7 8 9 dochlkr φ˙˙LGY˙˙LG=LGLGY
12 10 11 bitrd φ˙˙LGV˙˙LG=LGLGY