Metamath Proof Explorer


Theorem domfin4

Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion domfin4 AFinIVBABFinIV

Proof

Step Hyp Ref Expression
1 domeng AFinIVBAxBxxA
2 1 biimpa AFinIVBAxBxxA
3 ensym BxxB
4 3 ad2antrl AFinIVBABxxAxB
5 ssfin4 AFinIVxAxFinIV
6 5 ad2ant2rl AFinIVBABxxAxFinIV
7 fin4en1 xBxFinIVBFinIV
8 4 6 7 sylc AFinIVBABxxABFinIV
9 2 8 exlimddv AFinIVBABFinIV