Metamath Proof Explorer


Theorem dpgti

Description: Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpgti.a A0
dpgti.b B+
Assertion dpgti A<A.B

Proof

Step Hyp Ref Expression
1 dpgti.a A0
2 dpgti.b B+
3 1 nn0rei A
4 10re 10
5 10pos 0<10
6 4 5 pm3.2i 100<10
7 elrp 10+100<10
8 6 7 mpbir 10+
9 rpdivcl B+10+B10+
10 2 8 9 mp2an B10+
11 ltaddrp AB10+A<A+B10
12 3 10 11 mp2an A<A+B10
13 rpre B+B
14 2 13 ax-mp B
15 1 14 dpval2 A.B=A+B10
16 12 15 breqtrri A<A.B