Metamath Proof Explorer


Theorem drnf1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 4-Oct-2016) (Revised by BJ, 17-Jun-2019) Avoid ax-10 . (Revised by Gino Giotto, 18-Nov-2024)

Ref Expression
Hypothesis dral1v.1 x x = y φ ψ
Assertion drnf1v x x = y x φ y ψ

Proof

Step Hyp Ref Expression
1 dral1v.1 x x = y φ ψ
2 1 drex1v x x = y x φ y ψ
3 1 dral1v x x = y x φ y ψ
4 2 3 imbi12d x x = y x φ x φ y ψ y ψ
5 df-nf x φ x φ x φ
6 df-nf y ψ y ψ y ψ
7 4 5 6 3bitr4g x x = y x φ y ψ