Metamath Proof Explorer
Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
drnginvrld.b |
|
|
|
drnginvrld.0 |
|
|
|
drnginvrld.t |
|
|
|
drnginvrld.u |
|
|
|
drnginvrld.i |
|
|
|
drnginvrld.r |
|
|
|
drnginvrld.x |
|
|
|
drnginvrld.1 |
|
|
Assertion |
drnginvrld |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvrld.b |
|
2 |
|
drnginvrld.0 |
|
3 |
|
drnginvrld.t |
|
4 |
|
drnginvrld.u |
|
5 |
|
drnginvrld.i |
|
6 |
|
drnginvrld.r |
|
7 |
|
drnginvrld.x |
|
8 |
|
drnginvrld.1 |
|
9 |
1 2 3 4 5
|
drnginvrl |
|
10 |
6 7 8 9
|
syl3anc |
|