Metamath Proof Explorer


Theorem drnglidl1ne0

Description: In a nonzero ring, the zero ideal is different of the unit ideal. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypotheses drnglidl1ne0.1 0˙=0R
drnglidl1ne0.2 B=BaseR
Assertion drnglidl1ne0 RNzRingB0˙

Proof

Step Hyp Ref Expression
1 drnglidl1ne0.1 0˙=0R
2 drnglidl1ne0.2 B=BaseR
3 nzrring RNzRingRRing
4 eqid 1R=1R
5 2 4 ringidcl RRing1RB
6 3 5 syl RNzRing1RB
7 4 1 nzrnz RNzRing1R0˙
8 nelsn 1R0˙¬1R0˙
9 7 8 syl RNzRing¬1R0˙
10 nelne1 1RB¬1R0˙B0˙
11 6 9 10 syl2anc RNzRingB0˙