Metamath Proof Explorer


Theorem drngnzr

Description: All division rings are nonzero. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion drngnzr RDivRingRNzRing

Proof

Step Hyp Ref Expression
1 drngring RDivRingRRing
2 eqid 0R=0R
3 eqid 1R=1R
4 2 3 drngunz RDivRing1R0R
5 3 2 isnzr RNzRingRRing1R0R
6 1 4 5 sylanbrc RDivRingRNzRing