Metamath Proof Explorer


Theorem drsbn0

Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis drsbn0.b B=BaseK
Assertion drsbn0 KDirsetB

Proof

Step Hyp Ref Expression
1 drsbn0.b B=BaseK
2 eqid K=K
3 1 2 isdrs KDirsetKProsetBxByBzBxKzyKz
4 3 simp2bi KDirsetB