Metamath Proof Explorer


Theorem isdrs

Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isdrs.b B=BaseK
isdrs.l ˙=K
Assertion isdrs KDirsetKProsetBxByBzBx˙zy˙z

Proof

Step Hyp Ref Expression
1 isdrs.b B=BaseK
2 isdrs.l ˙=K
3 fveq2 f=KBasef=BaseK
4 3 1 eqtr4di f=KBasef=B
5 fveq2 f=Kf=K
6 5 2 eqtr4di f=Kf=˙
7 6 sbceq1d f=K[˙f/r]˙bxbybzbxrzyrz[˙˙/r]˙bxbybzbxrzyrz
8 4 7 sbceqbid f=K[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz[˙B/b]˙[˙˙/r]˙bxbybzbxrzyrz
9 1 fvexi BV
10 2 fvexi ˙V
11 neeq1 b=BbB
12 11 adantr b=Br=˙bB
13 rexeq b=BzbxrzyrzzBxrzyrz
14 13 raleqbi1dv b=BybzbxrzyrzyBzBxrzyrz
15 14 raleqbi1dv b=BxbybzbxrzyrzxByBzBxrzyrz
16 breq r=˙xrzx˙z
17 breq r=˙yrzy˙z
18 16 17 anbi12d r=˙xrzyrzx˙zy˙z
19 18 rexbidv r=˙zBxrzyrzzBx˙zy˙z
20 19 2ralbidv r=˙xByBzBxrzyrzxByBzBx˙zy˙z
21 15 20 sylan9bb b=Br=˙xbybzbxrzyrzxByBzBx˙zy˙z
22 12 21 anbi12d b=Br=˙bxbybzbxrzyrzBxByBzBx˙zy˙z
23 9 10 22 sbc2ie [˙B/b]˙[˙˙/r]˙bxbybzbxrzyrzBxByBzBx˙zy˙z
24 8 23 bitrdi f=K[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrzBxByBzBx˙zy˙z
25 df-drs Dirset=fProset|[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz
26 24 25 elrab2 KDirsetKProsetBxByBzBx˙zy˙z
27 3anass KProsetBxByBzBx˙zy˙zKProsetBxByBzBx˙zy˙z
28 26 27 bitr4i KDirsetKProsetBxByBzBx˙zy˙z