Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdrs.b | |
|
isdrs.l | |
||
Assertion | isdrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrs.b | |
|
2 | isdrs.l | |
|
3 | fveq2 | |
|
4 | 3 1 | eqtr4di | |
5 | fveq2 | |
|
6 | 5 2 | eqtr4di | |
7 | 6 | sbceq1d | |
8 | 4 7 | sbceqbid | |
9 | 1 | fvexi | |
10 | 2 | fvexi | |
11 | neeq1 | |
|
12 | 11 | adantr | |
13 | rexeq | |
|
14 | 13 | raleqbi1dv | |
15 | 14 | raleqbi1dv | |
16 | breq | |
|
17 | breq | |
|
18 | 16 17 | anbi12d | |
19 | 18 | rexbidv | |
20 | 19 | 2ralbidv | |
21 | 15 20 | sylan9bb | |
22 | 12 21 | anbi12d | |
23 | 9 10 22 | sbc2ie | |
24 | 8 23 | bitrdi | |
25 | df-drs | |
|
26 | 24 25 | elrab2 | |
27 | 3anass | |
|
28 | 26 27 | bitr4i | |