| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdrs.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | isdrs.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑓  =  𝐾  →  ( Base ‘ 𝑓 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑓  =  𝐾  →  ( Base ‘ 𝑓 )  =  𝐵 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑓  =  𝐾  →  ( le ‘ 𝑓 )  =  ( le ‘ 𝐾 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑓  =  𝐾  →  ( le ‘ 𝑓 )  =   ≤  ) | 
						
							| 7 | 6 | sbceq1d | ⊢ ( 𝑓  =  𝐾  →  ( [ ( le ‘ 𝑓 )  /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) )  ↔  [  ≤   /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) ) ) | 
						
							| 8 | 4 7 | sbceqbid | ⊢ ( 𝑓  =  𝐾  →  ( [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( le ‘ 𝑓 )  /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) )  ↔  [ 𝐵  /  𝑏 ] [  ≤   /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) ) ) | 
						
							| 9 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 10 | 2 | fvexi | ⊢  ≤   ∈  V | 
						
							| 11 |  | neeq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏  ≠  ∅  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑟  =   ≤  )  →  ( 𝑏  ≠  ∅  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 13 |  | rexeq | ⊢ ( 𝑏  =  𝐵  →  ( ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∃ 𝑧  ∈  𝐵 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) ) | 
						
							| 14 | 13 | raleqbi1dv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) ) | 
						
							| 15 | 14 | raleqbi1dv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) ) | 
						
							| 16 |  | breq | ⊢ ( 𝑟  =   ≤   →  ( 𝑥 𝑟 𝑧  ↔  𝑥  ≤  𝑧 ) ) | 
						
							| 17 |  | breq | ⊢ ( 𝑟  =   ≤   →  ( 𝑦 𝑟 𝑧  ↔  𝑦  ≤  𝑧 ) ) | 
						
							| 18 | 16 17 | anbi12d | ⊢ ( 𝑟  =   ≤   →  ( ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑟  =   ≤   →  ( ∃ 𝑧  ∈  𝐵 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 20 | 19 | 2ralbidv | ⊢ ( 𝑟  =   ≤   →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 21 | 15 20 | sylan9bb | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑟  =   ≤  )  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 22 | 12 21 | anbi12d | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑟  =   ≤  )  →  ( ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) )  ↔  ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) ) | 
						
							| 23 | 9 10 22 | sbc2ie | ⊢ ( [ 𝐵  /  𝑏 ] [  ≤   /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) )  ↔  ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 24 | 8 23 | bitrdi | ⊢ ( 𝑓  =  𝐾  →  ( [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( le ‘ 𝑓 )  /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) )  ↔  ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) ) | 
						
							| 25 |  | df-drs | ⊢ Dirset  =  { 𝑓  ∈   Proset   ∣  [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( le ‘ 𝑓 )  /  𝑟 ] ( 𝑏  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃ 𝑧  ∈  𝑏 ( 𝑥 𝑟 𝑧  ∧  𝑦 𝑟 𝑧 ) ) } | 
						
							| 26 | 24 25 | elrab2 | ⊢ ( 𝐾  ∈  Dirset  ↔  ( 𝐾  ∈   Proset   ∧  ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) ) | 
						
							| 27 |  | 3anass | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) )  ↔  ( 𝐾  ∈   Proset   ∧  ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) ) | 
						
							| 28 | 26 27 | bitr4i | ⊢ ( 𝐾  ∈  Dirset  ↔  ( 𝐾  ∈   Proset   ∧  𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑦  ≤  𝑧 ) ) ) |