| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drsbn0.b |
|
| 2 |
|
drsdirfi.l |
|
| 3 |
|
sseq1 |
|
| 4 |
3
|
anbi2d |
|
| 5 |
|
raleq |
|
| 6 |
5
|
rexbidv |
|
| 7 |
4 6
|
imbi12d |
|
| 8 |
|
sseq1 |
|
| 9 |
8
|
anbi2d |
|
| 10 |
|
raleq |
|
| 11 |
10
|
rexbidv |
|
| 12 |
9 11
|
imbi12d |
|
| 13 |
|
sseq1 |
|
| 14 |
13
|
anbi2d |
|
| 15 |
|
raleq |
|
| 16 |
15
|
rexbidv |
|
| 17 |
14 16
|
imbi12d |
|
| 18 |
|
sseq1 |
|
| 19 |
18
|
anbi2d |
|
| 20 |
|
raleq |
|
| 21 |
20
|
rexbidv |
|
| 22 |
19 21
|
imbi12d |
|
| 23 |
1
|
drsbn0 |
|
| 24 |
|
ral0 |
|
| 25 |
24
|
jctr |
|
| 26 |
25
|
eximi |
|
| 27 |
|
n0 |
|
| 28 |
|
df-rex |
|
| 29 |
26 27 28
|
3imtr4i |
|
| 30 |
23 29
|
syl |
|
| 31 |
30
|
adantr |
|
| 32 |
|
ssun1 |
|
| 33 |
|
sstr |
|
| 34 |
32 33
|
mpan |
|
| 35 |
34
|
anim2i |
|
| 36 |
|
breq2 |
|
| 37 |
36
|
ralbidv |
|
| 38 |
37
|
cbvrexvw |
|
| 39 |
|
simplrr |
|
| 40 |
|
drsprs |
|
| 41 |
40
|
ad5antr |
|
| 42 |
34
|
ad2antlr |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
sselda |
|
| 45 |
44
|
adantr |
|
| 46 |
|
simp-4r |
|
| 47 |
|
simprl |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
|
simpr |
|
| 50 |
|
simprrl |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
1 2
|
prstr |
|
| 53 |
41 45 46 48 49 51 52
|
syl132anc |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
ralimdva |
|
| 56 |
55
|
adantlrr |
|
| 57 |
39 56
|
mpd |
|
| 58 |
|
simprrr |
|
| 59 |
|
vex |
|
| 60 |
|
breq1 |
|
| 61 |
59 60
|
ralsn |
|
| 62 |
58 61
|
sylibr |
|
| 63 |
|
ralun |
|
| 64 |
57 62 63
|
syl2anc |
|
| 65 |
|
simpll |
|
| 66 |
|
simprl |
|
| 67 |
|
ssun2 |
|
| 68 |
|
sstr |
|
| 69 |
67 68
|
mpan |
|
| 70 |
59
|
snss |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
71
|
ad2antlr |
|
| 73 |
1 2
|
drsdir |
|
| 74 |
65 66 72 73
|
syl3anc |
|
| 75 |
64 74
|
reximddv |
|
| 76 |
75
|
rexlimdvaa |
|
| 77 |
38 76
|
biimtrid |
|
| 78 |
35 77
|
embantd |
|
| 79 |
78
|
com12 |
|
| 80 |
79
|
a1i |
|
| 81 |
7 12 17 22 31 80
|
findcard2 |
|
| 82 |
81
|
com12 |
|
| 83 |
82
|
3impia |
|