Metamath Proof Explorer


Theorem dvdsprm

Description: An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion dvdsprm N2PNPN=P

Proof

Step Hyp Ref Expression
1 breq1 z=NzPNP
2 eqeq1 z=Nz=PN=P
3 1 2 imbi12d z=NzPz=PNPN=P
4 3 rspcv N2z2zPz=PNPN=P
5 isprm4 PP2z2zPz=P
6 5 simprbi Pz2zPz=P
7 4 6 impel N2PNPN=P
8 eluzelz N2N
9 iddvds NNN
10 breq2 N=PNNNP
11 9 10 syl5ibcom NN=PNP
12 8 11 syl N2N=PNP
13 12 adantr N2PN=PNP
14 7 13 impbid N2PNPN=P