Metamath Proof Explorer


Theorem dvdsrcl2

Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
Assertion dvdsrcl2 RRingX˙YYB

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 eqid R=R
4 1 2 3 dvdsr X˙YXBxBxRX=Y
5 1 3 ringcl RRingxBXBxRXB
6 5 3expa RRingxBXBxRXB
7 6 an32s RRingXBxBxRXB
8 eleq1 xRX=YxRXBYB
9 7 8 syl5ibcom RRingXBxBxRX=YYB
10 9 rexlimdva RRingXBxBxRX=YYB
11 10 impr RRingXBxBxRX=YYB
12 4 11 sylan2b RRingX˙YYB