Metamath Proof Explorer


Theorem dvdsrmul

Description: A left-multiple of X is divisible by X . (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
dvdsr.3 ·˙=R
Assertion dvdsrmul XBYBX˙Y·˙X

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 dvdsr.3 ·˙=R
4 simpl XBYBXB
5 simpr XBYBYB
6 eqid Y·˙X=Y·˙X
7 oveq1 z=Yz·˙X=Y·˙X
8 7 eqeq1d z=Yz·˙X=Y·˙XY·˙X=Y·˙X
9 8 rspcev YBY·˙X=Y·˙XzBz·˙X=Y·˙X
10 5 6 9 sylancl XBYBzBz·˙X=Y·˙X
11 1 2 3 dvdsr X˙Y·˙XXBzBz·˙X=Y·˙X
12 4 10 11 sylanbrc XBYBX˙Y·˙X