Metamath Proof Explorer


Theorem dvdszzq

Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023)

Ref Expression
Hypotheses dvdszzq.1 N=AB
dvdszzq.2 φP
dvdszzq.3 φN
dvdszzq.4 φB
dvdszzq.5 φB0
dvdszzq.6 φPA
dvdszzq.7 φ¬PB
Assertion dvdszzq φPN

Proof

Step Hyp Ref Expression
1 dvdszzq.1 N=AB
2 dvdszzq.2 φP
3 dvdszzq.3 φN
4 dvdszzq.4 φB
5 dvdszzq.5 φB0
6 dvdszzq.6 φPA
7 dvdszzq.7 φ¬PB
8 3 zcnd φN
9 4 zcnd φB
10 dvdszrcl PAPA
11 10 simprd PAA
12 6 11 syl φA
13 12 zcnd φA
14 8 9 13 5 ldiv φNB=AN=AB
15 1 14 mpbiri φNB=A
16 6 15 breqtrrd φPNB
17 euclemma PNBPNBPNPB
18 17 biimpa PNBPNBPNPB
19 2 3 4 16 18 syl31anc φPNPB
20 orcom PNPBPBPN
21 df-or PBPN¬PBPN
22 20 21 sylbb PNPB¬PBPN
23 19 7 22 sylc φPN