Metamath Proof Explorer


Theorem dvelimexcasei

Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. Inference form of dvelimexcased . See axnulg for an example of its use. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses dvelimexcasei.1 ¬ x x = y x φ
dvelimexcasei.2 ¬ x x = y z χ
dvelimexcasei.3 ¬ x x = y z = x φ χ
dvelimexcasei.4 x x = y ψ χ
dvelimexcasei.5 z φ
dvelimexcasei.6 x ψ
Assertion dvelimexcasei x χ

Proof

Step Hyp Ref Expression
1 dvelimexcasei.1 ¬ x x = y x φ
2 dvelimexcasei.2 ¬ x x = y z χ
3 dvelimexcasei.3 ¬ x x = y z = x φ χ
4 dvelimexcasei.4 x x = y ψ χ
5 dvelimexcasei.5 z φ
6 dvelimexcasei.6 x ψ
7 nftru x
8 nfvd ¬ x x = y z
9 1 adantl ¬ x x = y x φ
10 2 adantl ¬ x x = y z χ
11 3 adantl ¬ x x = y z = x φ χ
12 4 adantl x x = y ψ χ
13 5 a1i z φ
14 6 a1i x ψ
15 7 8 9 10 11 12 13 14 dvelimexcased x χ
16 15 mptru x χ