Metamath Proof Explorer


Theorem dvrval

Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses dvrval.b B=BaseR
dvrval.t ·˙=R
dvrval.u U=UnitR
dvrval.i I=invrR
dvrval.d ×˙=/rR
Assertion dvrval XBYUX×˙Y=X·˙IY

Proof

Step Hyp Ref Expression
1 dvrval.b B=BaseR
2 dvrval.t ·˙=R
3 dvrval.u U=UnitR
4 dvrval.i I=invrR
5 dvrval.d ×˙=/rR
6 oveq1 x=Xx·˙Iy=X·˙Iy
7 fveq2 y=YIy=IY
8 7 oveq2d y=YX·˙Iy=X·˙IY
9 1 2 3 4 5 dvrfval ×˙=xB,yUx·˙Iy
10 ovex X·˙IYV
11 6 8 9 10 ovmpo XBYUX×˙Y=X·˙IY