Metamath Proof Explorer


Theorem dya2iocival

Description: The function I returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl . (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
Assertion dya2iocival N X X I N = X 2 N X + 1 2 N

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 oveq1 u = X u 2 m = X 2 m
4 oveq1 u = X u + 1 = X + 1
5 4 oveq1d u = X u + 1 2 m = X + 1 2 m
6 3 5 oveq12d u = X u 2 m u + 1 2 m = X 2 m X + 1 2 m
7 oveq2 m = N 2 m = 2 N
8 7 oveq2d m = N X 2 m = X 2 N
9 7 oveq2d m = N X + 1 2 m = X + 1 2 N
10 8 9 oveq12d m = N X 2 m X + 1 2 m = X 2 N X + 1 2 N
11 oveq1 u = x u 2 m = x 2 m
12 oveq1 u = x u + 1 = x + 1
13 12 oveq1d u = x u + 1 2 m = x + 1 2 m
14 11 13 oveq12d u = x u 2 m u + 1 2 m = x 2 m x + 1 2 m
15 oveq2 m = n 2 m = 2 n
16 15 oveq2d m = n x 2 m = x 2 n
17 15 oveq2d m = n x + 1 2 m = x + 1 2 n
18 16 17 oveq12d m = n x 2 m x + 1 2 m = x 2 n x + 1 2 n
19 14 18 cbvmpov u , m u 2 m u + 1 2 m = x , n x 2 n x + 1 2 n
20 2 19 eqtr4i I = u , m u 2 m u + 1 2 m
21 ovex X 2 N X + 1 2 N V
22 6 10 20 21 ovmpo X N X I N = X 2 N X + 1 2 N
23 22 ancoms N X X I N = X 2 N X + 1 2 N