Metamath Proof Explorer


Theorem ec1cnvres

Description: Converse restricted coset of B . (Contributed by Peter Mazsa, 22-Mar-2019) (Revised by Peter Mazsa, 21-Oct-2021)

Ref Expression
Assertion ec1cnvres B V B R A -1 = x A | x R B

Proof

Step Hyp Ref Expression
1 elec1cnvres B V x B R A -1 x A x R B
2 1 eqabdv B V B R A -1 = x | x A x R B
3 df-rab x A | x R B = x | x A x R B
4 2 3 eqtr4di B V B R A -1 = x A | x R B